The skew-symmetric-Laplace-uniform distribution (2024)

\nameRaju.K. Lohota The skew-symmetric-Laplace-uniform distribution (1) and V. U. Dixitb The skew-symmetric-Laplace-uniform distribution (2)CONTACT Raju.K. Lohot. Email: rajulohot.92@gmail.comaDepartment of Statistics, SVKM’s Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), Mumbai, Maharashtra, India; bDepartment of Statistics, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai, Maharashtra, India

Abstract

Laplace distribution is popular in the field of economics and finance. Still, data sets often show a lack of symmetry and a tendency of being bounded from either side of their support. In view of this, we introduce a new family of skew distribution using the skewing mechanism of Azzalini, (1985), namely, skew-symmetric-Laplace-uniform distribution (SSLUD). Here uniform distribution is used not only to introduce skewness in Laplace distribution but also to restrict distribution support on one side of the real line. This paper provides a comprehensive description of the essential distributional properties of SSLUD. Estimators of the parameter are obtained using the method of moments and the method of maximum likelihood. The finite sample and asymptotic properties of these estimators are studied using simulation. It is observed that the maximum likelihood estimator is better than the moment estimator through a simulation study. Finally, an application of SSLUD to real-life data on the daily percentage change in the price of NIFTY 50, an Indian stock market index, is presented.

keywords:

Estimation; Indian stock market index; one side bounded support distribution; simulation; skew-symmetric-Laplace-uniform distribution

{jelcode}

C10, C13

{amscode}

62E10, 62F10

1 Introduction

Symmetry is something which we try to seek naturally in everything, but not everything in the world is symmetric. So expecting symmetry in everything is unrealistic. In statistics, most classical procedures assume some kind of symmetry. However, the absence of symmetry is much more common in many data sets. In particular, much interest has been shown recently in a family of distributions called “Skew-symmetric distributions”. Let f𝑓fitalic_f be a density function symmetric about zero, and K𝐾Kitalic_K an absolutely continuous distribution function such that the corresponding density function Ksuperscript𝐾K\,^{\prime}italic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is symmetric about zero. Then, Azzalini’s form of skew-symmetric density function for any real λ𝜆\lambdaitalic_λ, as mentioned in Azzalini, (1985), is given as

2f(x)K(λx).2𝑓𝑥𝐾𝜆𝑥2\,f(x)\,K(\lambda x).2 italic_f ( italic_x ) italic_K ( italic_λ italic_x ) .(1)

Arnold and Lin, (2004) studied a special case using K𝐾Kitalic_K as the cumulative distribution function (cdf) of f𝑓fitalic_f in (1). Nadarajah and Kotz, (2003) introduced the skew-symmetric-normal distribution family by replacing f𝑓fitalic_f with ϕitalic-ϕ\phiitalic_ϕ, the probability density function (pdf) of the standard normal distribution in (1). Further, they studied various skew-symmetric distributions by choosing K𝐾Kitalic_K as the cdf of normal, Student’s t, Laplace, logistic, and uniform distributions. Nadarajah, (2009) introduced and studied the skew logistic distribution considering f𝑓fitalic_f and K𝐾Kitalic_K as pdf and cdf of logistic distribution, respectively in (1).

When f𝑓fitalic_f and K𝐾Kitalic_K are the density and distribution functions of the Laplace distribution in (1), respectively, it is called a skew-Laplace distribution. Aryal and Rao, (2005) studied some properties of truncated skew-Laplace distribution, and Kozubowski and Nolan, (2008) showed that a skew-Laplace distribution is infinitely divisible. Further, Nekoukhou and Alamatsaz, (2012) introduced a more general family of skew-Laplace distributions by considering f𝑓fitalic_f as a standard Laplace pdf, K𝐾Kitalic_K as an arbitrary symmetric cdf, and w𝑤witalic_w as any odd continuous function in place of λx𝜆𝑥\lambda xitalic_λ italic_x in (1). That is,

e|x|F(w(x)).superscript𝑒𝑥𝐹𝑤𝑥e^{-\lvert x\rvert}\,F(w(x)).italic_e start_POSTSUPERSCRIPT - | italic_x | end_POSTSUPERSCRIPT italic_F ( italic_w ( italic_x ) ) .(2)

Recently much interest has been shown in the construction of flexible parametric classes of distributions that exhibit skewness and kurtosis, which is different from the normal distribution. While much of classical statistical analysis is based on Gaussian distributional assumptions, statistical modeling with the Laplace distribution has gained importance in many applied fields. The motivation originates from data sets, including environmental, financial, and biomedical ones, which often do not follow the normal law. Models based on the Laplace distributions are popular in economics and finance; see Zeckhauser and Thompson, (1970); Rachev and SenGupta, (1993); Rydén etal., (1998); Theodossiou, (1998); Kotz etal., (2001); Kozubowski and Podgórski, (2001). They are rapidly becoming distributions of the first choice whenever “something” with heavier than normal tail is observed in the data. The interesting characteristic has often bound on its support from either end along with skew nature. i.e., data is positively skewed but bounded below or negatively skewed but bounded above. For example, consider the scenario of family income, which is typically positively skewed and bounded below by a certain amount. In this paper, by considering interesting applications of Laplace distribution, the need for skewness and restriction on the support of variable of interest, skew-symmetric-Laplace-uniform distribution (SSLUD) is introduced. Here, we consider f𝑓fitalic_f as the standard Laplace density function and K𝐾Kitalic_K as a distribution function of Uniform(θ,θ)𝜃𝜃(-\theta,\theta)( - italic_θ , italic_θ ) in (1). It provides a more flexible model representing the data as adequately as possible. Thus, we can expect this to be useful in more practical situations. The standard Laplace pdf is

f(x)=12e|x|,x.formulae-sequence𝑓𝑥12superscript𝑒𝑥𝑥f(x)=\frac{1}{2}\,e^{-\lvert x\rvert},\quad x\in\mathbb{R}.italic_f ( italic_x ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_e start_POSTSUPERSCRIPT - | italic_x | end_POSTSUPERSCRIPT , italic_x ∈ blackboard_R .(3)

The distribution function of Uniform(θ,θ)𝜃𝜃(-\theta,\theta)( - italic_θ , italic_θ ) where θ>0𝜃0\theta>0italic_θ > 0 is

K(x)={ 0ifx<θ,x+θ2θifθx<θ, 1ifxθ.𝐾𝑥cases 0if𝑥𝜃𝑥𝜃2𝜃if𝜃𝑥𝜃1if𝑥𝜃K(x)=\begin{cases}\;0&\text{if}\ x<-\theta,\\\displaystyle\;\frac{x+\theta}{2\theta}&\text{if}\ -\theta\leqslant x<\theta,%\\\;1&\text{if}\ x\geqslant\theta.\end{cases}italic_K ( italic_x ) = { start_ROW start_CELL 0 end_CELL start_CELL if italic_x < - italic_θ , end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_x + italic_θ end_ARG start_ARG 2 italic_θ end_ARG end_CELL start_CELL if - italic_θ ⩽ italic_x < italic_θ , end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL if italic_x ⩾ italic_θ . end_CELL end_ROW(4)

Thus, the density function of SSLUD is

g(x)=2f(x)K(λx),x,λ.formulae-sequence𝑔𝑥2𝑓𝑥𝐾𝜆𝑥𝑥𝜆g(x)=2\,f(x)\,K(\lambda x),\quad x,\lambda\in\mathbb{R}.italic_g ( italic_x ) = 2 italic_f ( italic_x ) italic_K ( italic_λ italic_x ) , italic_x , italic_λ ∈ blackboard_R .(5)

We define μ=θλ𝜇𝜃𝜆\displaystyle\mu=\frac{\theta}{\lambda}italic_μ = divide start_ARG italic_θ end_ARG start_ARG italic_λ end_ARG so that model is identifiable. Here λ𝜆\lambda\in\mathbb{R}italic_λ ∈ blackboard_R, θ>0𝜃0\theta>0italic_θ > 0 and hence μ{0}𝜇0\mu\in\mathbb{R}-\{0\}italic_μ ∈ blackboard_R - { 0 }. Thus,

g(x)={ 0ifxμ<1,e|x|(x2μ+12)if1xμ<1,e|x|ifxμ1.𝑔𝑥cases 0if𝑥𝜇1superscript𝑒𝑥𝑥2𝜇12if1𝑥𝜇1superscript𝑒𝑥if𝑥𝜇1g(x)=\begin{cases}\;0&\text{if}\ \displaystyle\frac{x}{\mu}<-1,\\\displaystyle\;e^{-\lvert x\rvert}\ \left(\frac{x}{2\mu}+\frac{1}{2}\right)&%\text{if}\ \displaystyle-1\leqslant\frac{x}{\mu}<1,\\\displaystyle\;e^{-\lvert x\rvert}\ &\text{if}\ \displaystyle\frac{x}{\mu}%\geqslant 1.\end{cases}italic_g ( italic_x ) = { start_ROW start_CELL 0 end_CELL start_CELL if divide start_ARG italic_x end_ARG start_ARG italic_μ end_ARG < - 1 , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT - | italic_x | end_POSTSUPERSCRIPT ( divide start_ARG italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) end_CELL start_CELL if - 1 ⩽ divide start_ARG italic_x end_ARG start_ARG italic_μ end_ARG < 1 , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT - | italic_x | end_POSTSUPERSCRIPT end_CELL start_CELL if divide start_ARG italic_x end_ARG start_ARG italic_μ end_ARG ⩾ 1 . end_CELL end_ROW(6)

Here, one can notice that the support of X𝑋Xitalic_X is bounded above if μ<0𝜇0\mu<0italic_μ < 0 and bounded below if μ>0𝜇0\mu>0italic_μ > 0 by μ𝜇-\mu- italic_μ. The corresponding cdf G(x)𝐺𝑥G(x)italic_G ( italic_x ) is as follows. When μ<0𝜇0\mu<0italic_μ < 0,

G(x)={exifx<μ,ex2μ(x+μ1)+eμ2μifμx<0, 1+eμ2μex2μ(x+μ+1)if 0x<μ, 1ifxμ,𝐺𝑥casessuperscript𝑒𝑥if𝑥𝜇superscript𝑒𝑥2𝜇𝑥𝜇1superscript𝑒𝜇2𝜇if𝜇𝑥01superscript𝑒𝜇2𝜇superscript𝑒𝑥2𝜇𝑥𝜇1if 0𝑥𝜇1if𝑥𝜇\begin{split}G(x)&=\begin{cases}\displaystyle\;e^{x}&\text{if}\ x<\mu,\vspace{%0.25 cm}\\\displaystyle\;\frac{e^{x}}{2\mu}(x+\mu-1)+\frac{e^{\mu}}{2\mu}&\text{if}\ \mu%\leqslant x<0,\vspace{0.25 cm}\\\displaystyle\;1+\frac{e^{\mu}}{2\mu}-\frac{e^{-x}}{2\mu}(x+\mu+1)&\text{if}\ %0\leqslant x<-\mu,\vspace{0.25 cm}\\\;1&\text{if}\ x\geqslant-\mu,\end{cases}\\\end{split}start_ROW start_CELL italic_G ( italic_x ) end_CELL start_CELL = { start_ROW start_CELL italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_CELL start_CELL if italic_x < italic_μ , end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG ( italic_x + italic_μ - 1 ) + divide start_ARG italic_e start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG end_CELL start_CELL if italic_μ ⩽ italic_x < 0 , end_CELL end_ROW start_ROW start_CELL 1 + divide start_ARG italic_e start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG - divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG ( italic_x + italic_μ + 1 ) end_CELL start_CELL if 0 ⩽ italic_x < - italic_μ , end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL if italic_x ⩾ - italic_μ , end_CELL end_ROW end_CELL end_ROW(7a)

and when μ>0𝜇0\mu>0italic_μ > 0,

G(x)={ 0ifx<μ,ex2μ(x+μ1)+eμ2μifμx<0, 1+eμ2μex2μ(x+μ+1)if 0x<μ, 1exifxμ.𝐺𝑥cases 0if𝑥𝜇superscript𝑒𝑥2𝜇𝑥𝜇1superscript𝑒𝜇2𝜇if𝜇𝑥01superscript𝑒𝜇2𝜇superscript𝑒𝑥2𝜇𝑥𝜇1if 0𝑥𝜇1superscript𝑒𝑥if𝑥𝜇\begin{split}G(x)&=\begin{cases}\;0&\text{if}\ x<-\mu,\vspace{0.25 cm}\\\displaystyle\;\frac{e^{x}}{2\mu}(x+\mu-1)+\frac{e^{-\mu}}{2\mu}&\text{if}\ -%\mu\leqslant x<0,\vspace{0.25 cm}\\\displaystyle\;1+\frac{e^{-\mu}}{2\mu}-\frac{e^{-x}}{2\mu}(x+\mu+1)&\text{if}%\ 0\leqslant x<\mu,\vspace{0.25 cm}\\\;1-e^{-x}&\text{if}\ x\geqslant\mu.\end{cases}\end{split}start_ROW start_CELL italic_G ( italic_x ) end_CELL start_CELL = { start_ROW start_CELL 0 end_CELL start_CELL if italic_x < - italic_μ , end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG ( italic_x + italic_μ - 1 ) + divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG end_CELL start_CELL if - italic_μ ⩽ italic_x < 0 , end_CELL end_ROW start_ROW start_CELL 1 + divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG - divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG ( italic_x + italic_μ + 1 ) end_CELL start_CELL if 0 ⩽ italic_x < italic_μ , end_CELL end_ROW start_ROW start_CELL 1 - italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_CELL start_CELL if italic_x ⩾ italic_μ . end_CELL end_ROW end_CELL end_ROW(7b)

Throughout the rest of this paper, unless otherwise stated, we shall assume that λ>0𝜆0\lambda>0italic_λ > 0, i.e., μ>0𝜇0\mu>0italic_μ > 0, since the corresponding results for λ<0𝜆0\lambda<0italic_λ < 0, i.e., μ<0𝜇0\mu<0italic_μ < 0, can be obtained using the fact that X𝑋-X- italic_X has a pdf given by 2f(x)K(λx)2𝑓𝑥𝐾𝜆𝑥2f(x)K(-\lambda x)2 italic_f ( italic_x ) italic_K ( - italic_λ italic_x ). Figure 1 illustrates the shape of the pdf (6) for μ=0.25,0.5,0.75,1,3𝜇0.250.50.7513\mu=0.25,0.5,0.75,1,3italic_μ = 0.25 , 0.5 , 0.75 , 1 , 3.

The skew-symmetric-Laplace-uniform distribution (3)

The skew-symmetric-Laplace-uniform distribution with parameter μ𝜇\muitalic_μ, SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) appears not to have been introduced yet. We provide a comprehensive description of the mathematical properties of (6). This paper follows up on Nadarajah, (2009), where a comprehensive description of the mathematical properties for the skew-logistic distribution is provided. Here, we have derived formulas for moment generating function, characteristic function, and first four raw moments (Sect. 2), mode and median (Sect. 3), hazard rate function (Sect. 4), mean deviation about ‘a𝑎aitalic_a’ (Sect. 5), Rènyi entropy and Shannon entropy (Sect. 6), simulation and estimation by the methods of moments and maximum likelihood (Sect. 7). We also discuss these estimators’ finite sample and asymptotic properties (Sect. 7). Finally, the application of SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) to real-life data on the daily percentage change in the price of NIFTY 50, an Indian stock market index, is discussed. Comparison of fitting of SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) is done with fitting of normal distribution N(θ,σ2)𝑁𝜃superscript𝜎2N(\theta,\sigma^{2})italic_N ( italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), Laplace distribution L(θ,β)𝐿𝜃𝛽L(\theta,\beta)italic_L ( italic_θ , italic_β ), and skew-Laplace distribution SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ) for the above data (Sect. 8).

2 Moment generating function, characteristic function, and moments

Here, we derive the moment generating function and the characteristic function of r. v. X𝑋Xitalic_X having pdf given in (6). The moment generating function (MGF) is MX(t)=E(etX)subscript𝑀𝑋𝑡𝐸superscript𝑒𝑡𝑋M_{X}(t)=E(e^{tX})italic_M start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_t ) = italic_E ( italic_e start_POSTSUPERSCRIPT italic_t italic_X end_POSTSUPERSCRIPT ). By using (6), one obtains

MX(t)=12μ{1+eμ(1+t)(1+t)2+1eμ(1t)(1t)2}+1(1t2),fort<1.formulae-sequencesubscript𝑀𝑋𝑡12𝜇1superscript𝑒𝜇1𝑡superscript1𝑡21superscript𝑒𝜇1𝑡superscript1𝑡211superscript𝑡2for𝑡1M_{X}(t)=\frac{1}{2\mu}\left\{\frac{-1+e^{-\mu(1+t)}}{(1+t)^{2}}+\frac{1-e^{-%\mu(1-t)}}{(1-t)^{2}}\right\}+\frac{1}{(1-t^{2})}\ ,\quad\text{for}\ t<1.italic_M start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 1 end_ARG start_ARG 2 italic_μ end_ARG { divide start_ARG - 1 + italic_e start_POSTSUPERSCRIPT - italic_μ ( 1 + italic_t ) end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1 - italic_e start_POSTSUPERSCRIPT - italic_μ ( 1 - italic_t ) end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG } + divide start_ARG 1 end_ARG start_ARG ( 1 - italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG , for italic_t < 1 .(8)

The corresponding characteristic function defined by ϕX(t)=E(eitX)subscriptitalic-ϕ𝑋𝑡𝐸superscript𝑒𝑖𝑡𝑋\phi_{X}(t)=E(e^{itX})italic_ϕ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_t ) = italic_E ( italic_e start_POSTSUPERSCRIPT italic_i italic_t italic_X end_POSTSUPERSCRIPT ) is given as

ϕX(t)=12μ{1+eμ(1+it)(1+it)2+1eμ(1it)(1it)2}+1(1+t2),forit<1,formulae-sequencesubscriptitalic-ϕ𝑋𝑡12𝜇1superscript𝑒𝜇1𝑖𝑡superscript1𝑖𝑡21superscript𝑒𝜇1𝑖𝑡superscript1𝑖𝑡211superscript𝑡2for𝑖𝑡1\phi_{X}(t)=\frac{1}{2\mu}\left\{\frac{-1+e^{-\mu(1+it)}}{(1+it)^{2}}+\frac{1-%e^{-\mu(1-it)}}{(1-it)^{2}}\right\}+\frac{1}{(1+t^{2})}\ ,\quad\text{for}\ it<1,italic_ϕ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_t ) = divide start_ARG 1 end_ARG start_ARG 2 italic_μ end_ARG { divide start_ARG - 1 + italic_e start_POSTSUPERSCRIPT - italic_μ ( 1 + italic_i italic_t ) end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_i italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1 - italic_e start_POSTSUPERSCRIPT - italic_μ ( 1 - italic_i italic_t ) end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_i italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG } + divide start_ARG 1 end_ARG start_ARG ( 1 + italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG , for italic_i italic_t < 1 ,(9)

where i=1𝑖1i=\sqrt{-1}italic_i = square-root start_ARG - 1 end_ARG is the complex imaginary unit.

The moments of a probability distribution are a collection of descriptive constants used for measuring its properties. Here, we derive the expression of the first four raw moments of X𝑋Xitalic_X. They are as follows.

μ1=2μ(1+2μ)eμ,μ2=2,μ3=24μeμ[μ2+6μ+18+24μ],μ4=24.formulae-sequencesuperscriptsubscript𝜇12𝜇12𝜇superscript𝑒𝜇formulae-sequencesuperscriptsubscript𝜇22formulae-sequencesuperscriptsubscript𝜇324𝜇superscript𝑒𝜇delimited-[]superscript𝜇26𝜇1824𝜇superscriptsubscript𝜇424\begin{split}\mu_{1}^{{}^{\prime}}&=\frac{2}{\mu}-\left(1+\frac{2}{\mu}\right)%e^{-\mu}\,,\\\mu_{2}^{{}^{\prime}}&=2\,,\\\mu_{3}^{{}^{\prime}}&=\frac{24}{\mu}-e^{-\mu}\left[\mu^{2}+6\mu+18+\frac{24}{%\mu}\right]\,,\\\mu_{4}^{{}^{\prime}}&=24\,.\end{split}start_ROW start_CELL italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL = divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG - ( 1 + divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL italic_μ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL = 2 , end_CELL end_ROW start_ROW start_CELL italic_μ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL = divide start_ARG 24 end_ARG start_ARG italic_μ end_ARG - italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT [ italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_μ + 18 + divide start_ARG 24 end_ARG start_ARG italic_μ end_ARG ] , end_CELL end_ROW start_ROW start_CELL italic_μ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL = 24 . end_CELL end_ROW(10)

We see that μ2r=(2r)!superscriptsubscript𝜇2𝑟2𝑟\mu_{2r}^{{}^{\prime}}=(2r)!italic_μ start_POSTSUBSCRIPT 2 italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT = ( 2 italic_r ) ! for r=1,2,𝑟12r=1,2,\ldotsitalic_r = 1 , 2 , … and corresponding central moments can be obtained using these raw moments but can not be simplified further. Note that, expressions given in (10) are valid only for μ>0𝜇0\mu>0italic_μ > 0. If μ<0𝜇0\mu<0italic_μ < 0, one must replace μ𝜇\muitalic_μ by μ𝜇-\mu- italic_μ in each of these expressions; in addition, the expressions for the odd order moments must be multiplied by -1.

The skew-symmetric-Laplace-uniform distribution (4)

Figure 2 illustrates the behavior of the four measures E(X𝑋Xitalic_X), Var(X𝑋Xitalic_X), Skewness(X𝑋Xitalic_X) and Kurtosis(X𝑋Xitalic_X) for μ=10,,10𝜇1010\mu=-10,\ldots,10italic_μ = - 10 , … , 10. Mean and skewness are decreasing functions of μ𝜇\muitalic_μ over the range (,0)0(-\infty,0)( - ∞ , 0 ) and (0,)0(0,\infty)( 0 , ∞ ), while variance and kurtosis are even functions of μ𝜇\muitalic_μ. The variance strictly decreases as μ𝜇\muitalic_μ moves from -\infty- ∞ to 0 and increases as μ𝜇\muitalic_μ moves from 0 to \infty.

3 Mode and median

Mode is the value of the r. v. X𝑋Xitalic_X at which pdf g(x)𝑔𝑥g(x)italic_g ( italic_x ) is maximum. When μ>0𝜇0\mu>0italic_μ > 0, g(x)superscript𝑔𝑥g^{\prime}(x)italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) is,

g(x)={ex(x+12μ+12)ifμx<0,ex(1x2μ12)if 0x<μ,exifxμ.superscript𝑔𝑥casessuperscript𝑒𝑥𝑥12𝜇12if𝜇𝑥0superscript𝑒𝑥1𝑥2𝜇12if 0𝑥𝜇superscript𝑒𝑥if𝑥𝜇g^{\prime}(x)=\begin{cases}\displaystyle\;e^{x}\left(\frac{x+1}{2\mu}+\frac{1}%{2}\right)&\text{if}\ -\mu\leqslant x<0,\\\displaystyle\;e^{-x}\ \left(\frac{1-x}{2\mu}-\frac{1}{2}\right)&\text{if}\ 0%\leqslant x<\mu,\\\displaystyle\;-\,e^{-x}\ &\text{if}\ x\geqslant\mu.\end{cases}italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) = { start_ROW start_CELL italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT ( divide start_ARG italic_x + 1 end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) end_CELL start_CELL if - italic_μ ⩽ italic_x < 0 , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT ( divide start_ARG 1 - italic_x end_ARG start_ARG 2 italic_μ end_ARG - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) end_CELL start_CELL if 0 ⩽ italic_x < italic_μ , end_CELL end_ROW start_ROW start_CELL - italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_CELL start_CELL if italic_x ⩾ italic_μ . end_CELL end_ROW(11)

It is clear from (11) that the function g(x)𝑔𝑥g(x)italic_g ( italic_x ) is increasing in [μ,0)𝜇0[-\mu,0)[ - italic_μ , 0 ) and decreasing in [μ,)𝜇[\mu,\infty)[ italic_μ , ∞ ). Hence, mode M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT of (6) lies in the interval [0,μ]0𝜇[0,\mu][ 0 , italic_μ ]. Accordingly, we equate g(x)superscript𝑔𝑥g^{\prime}(x)italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) to zero and solve for x. Thus, the value of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is M0=1μsubscript𝑀01𝜇M_{0}=1-\muitalic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1 - italic_μ for 12μ<112𝜇1\displaystyle\frac{1}{2}\leqslant\mu<1divide start_ARG 1 end_ARG start_ARG 2 end_ARG ⩽ italic_μ < 1. But when μ<12𝜇12\mu<\displaystyle\frac{1}{2}italic_μ < divide start_ARG 1 end_ARG start_ARG 2 end_ARG, the function g(x)𝑔𝑥g(x)italic_g ( italic_x ) increases in [μ,μ)𝜇𝜇[-\mu,\mu)[ - italic_μ , italic_μ ) and decreases in [μ,)𝜇[\mu,\infty)[ italic_μ , ∞ ). Hence, M0=μsubscript𝑀0𝜇M_{0}=\muitalic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_μ. Similarly, when μ>1𝜇1\mu>1italic_μ > 1, the function g(x)𝑔𝑥g(x)italic_g ( italic_x ) increases in [μ,0)𝜇0[-\mu,0)[ - italic_μ , 0 ) and decreases in [0,)0[0,\infty)[ 0 , ∞ ). Hence, M0=0subscript𝑀00M_{0}=0italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0. On similar lines, one can derive the expression of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT for μ<0𝜇0\mu<0italic_μ < 0. Thus, combining these two expressions of M0subscript𝑀0M_{0}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, we get

M0={μif 0<|μ|<12,sign(μ)μif12|μ|<1, 0if|μ|1.subscript𝑀0cases𝜇if 0𝜇12sign𝜇𝜇if12𝜇1 0if𝜇1M_{0}=\begin{cases}\;\mu&\text{if}\ \displaystyle 0<|\mu|<\frac{1}{2},\\\;\text{sign}(\mu)-\mu&\text{if}\ \displaystyle\frac{1}{2}\leqslant|\mu|<1,\\\;0&\text{if}\ |\mu|\geqslant 1.\end{cases}italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = { start_ROW start_CELL italic_μ end_CELL start_CELL if 0 < | italic_μ | < divide start_ARG 1 end_ARG start_ARG 2 end_ARG , end_CELL end_ROW start_ROW start_CELL sign ( italic_μ ) - italic_μ end_CELL start_CELL if divide start_ARG 1 end_ARG start_ARG 2 end_ARG ⩽ | italic_μ | < 1 , end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL if | italic_μ | ⩾ 1 . end_CELL end_ROW(12)

The median M𝑀Mitalic_M of (6) is the value of r. v. X𝑋Xitalic_X such that G(M)=12𝐺𝑀12G(M)=\frac{1}{2}italic_G ( italic_M ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG. Thus, for μ>0𝜇0\mu>0italic_μ > 0 using (7b),

M={Solution of the equation,ifG(0)>12,eM(M1+μ)+eμμ=0Solution of the equation,ifG(0)12<G(μ),eM(M1μ)+eμ+μ=0ln2ifG(μ)12,𝑀casesSolution of the equation,if𝐺012superscript𝑒𝑀𝑀1𝜇superscript𝑒𝜇𝜇0otherwiseSolution of the equation,if𝐺012𝐺𝜇superscript𝑒𝑀𝑀1𝜇superscript𝑒𝜇𝜇0otherwise2if𝐺𝜇12M=\begin{cases}\;\text{Solution of the equation,}&\text{if}\ \displaystyle G(0%)>\frac{1}{2},\\\;e^{M}(M-1+\mu)+e^{-\mu}-\mu=0\vspace{0.35 cm}\\\;\text{Solution of the equation,}&\text{if}\ \displaystyle G(0)\leqslant\frac%{1}{2}<G(\mu),\\\;e^{-M}(-M-1-\mu)+e^{-\mu}+\mu=0\vspace{0.35 cm}\\\;\ln 2&\text{if}\ \displaystyle G(\mu)\leqslant\frac{1}{2},\par\end{cases}italic_M = { start_ROW start_CELL Solution of the equation, end_CELL start_CELL if italic_G ( 0 ) > divide start_ARG 1 end_ARG start_ARG 2 end_ARG , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT ( italic_M - 1 + italic_μ ) + italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT - italic_μ = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Solution of the equation, end_CELL start_CELL if italic_G ( 0 ) ⩽ divide start_ARG 1 end_ARG start_ARG 2 end_ARG < italic_G ( italic_μ ) , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT - italic_M end_POSTSUPERSCRIPT ( - italic_M - 1 - italic_μ ) + italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT + italic_μ = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL roman_ln 2 end_CELL start_CELL if italic_G ( italic_μ ) ⩽ divide start_ARG 1 end_ARG start_ARG 2 end_ARG , end_CELL end_ROW(13)

where G(0)=12+eμ12μ𝐺012superscript𝑒𝜇12𝜇\displaystyle G(0)=\frac{1}{2}+\frac{e^{-\mu}-1}{2\mu}italic_G ( 0 ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT - 1 end_ARG start_ARG 2 italic_μ end_ARG and G(μ)=1eμ𝐺𝜇1superscript𝑒𝜇\displaystyle G(\mu)=1-e^{-\mu}italic_G ( italic_μ ) = 1 - italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT. Table 1 represents values of the median of (6) for different positive values of μ𝜇\muitalic_μ using the Newton-Raphson iterative procedure in R-software. If μ<0𝜇0\mu<0italic_μ < 0, one can obtain the median M𝑀Mitalic_M on similar lines using (7a).

μ𝜇\muitalic_μ0.250.50.7511.251.5
M𝑀Mitalic_M0.69314720.69314720.69204840.66810790.62736460.5811654

4 Hazard rate function

The reliability function R(x)=1G(x)𝑅𝑥1𝐺𝑥R(x)=1-G(x)italic_R ( italic_x ) = 1 - italic_G ( italic_x ) for μ>0𝜇0\mu>0italic_μ > 0 is obtained using (7b) as,

R(x)={ 1ifx<μ, 1ex2μ(x+μ1)eμ2μifμx<0,eμ2μ+ex2μ(x+μ+1)if 0x<μ,exifxμ.𝑅𝑥cases1if𝑥𝜇1superscript𝑒𝑥2𝜇𝑥𝜇1superscript𝑒𝜇2𝜇if𝜇𝑥0superscript𝑒𝜇2𝜇superscript𝑒𝑥2𝜇𝑥𝜇1if 0𝑥𝜇superscript𝑒𝑥if𝑥𝜇R(x)=\begin{cases}\;1&\text{if}\ x<-\mu,\vspace{0.25 cm}\\\displaystyle\;1-\frac{e^{x}}{2\mu}(x+\mu-1)-\frac{e^{-\mu}}{2\mu}&\text{if}\ %-\mu\leqslant x<0,\vspace{0.25 cm}\\\displaystyle\;-\frac{e^{-\mu}}{2\mu}+\frac{e^{-x}}{2\mu}(x+\mu+1)&\text{if}\ %0\leqslant x<\mu,\vspace{0.25 cm}\\\displaystyle\;e^{-x}&\text{if}\ x\geqslant\mu.\end{cases}italic_R ( italic_x ) = { start_ROW start_CELL 1 end_CELL start_CELL if italic_x < - italic_μ , end_CELL end_ROW start_ROW start_CELL 1 - divide start_ARG italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG ( italic_x + italic_μ - 1 ) - divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG end_CELL start_CELL if - italic_μ ⩽ italic_x < 0 , end_CELL end_ROW start_ROW start_CELL - divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG ( italic_x + italic_μ + 1 ) end_CELL start_CELL if 0 ⩽ italic_x < italic_μ , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_CELL start_CELL if italic_x ⩾ italic_μ . end_CELL end_ROW(14)

The hazard rate function is an important quantity, characterizing life phenomena. After some simple steps, one can get the hazard function h(x)=g(x)R(x)𝑥𝑔𝑥𝑅𝑥\displaystyle h(x)=\frac{g(x)}{R(x)}italic_h ( italic_x ) = divide start_ARG italic_g ( italic_x ) end_ARG start_ARG italic_R ( italic_x ) end_ARG for μ>0𝜇0\mu>0italic_μ > 0 as follows.

h(x)={ 0ifx<μ,[1+1+(2μeμ)exx+μ]1ifμx<0,[1+1e(xμ)x+μ]1if 0x<μ, 1ifxμ.𝑥cases 0if𝑥𝜇superscriptdelimited-[]112𝜇superscript𝑒𝜇superscript𝑒𝑥𝑥𝜇1if𝜇𝑥0superscriptdelimited-[]11superscript𝑒𝑥𝜇𝑥𝜇1if 0𝑥𝜇1if𝑥𝜇h(x)=\begin{cases}\;0&\text{if}\ x<-\mu,\vspace{0.25 cm}\\\displaystyle\;\left[-1+\frac{1+(2\mu-e^{-\mu})e^{-x}}{x+\mu}\right]^{-1}&%\text{if}\ -\mu\leqslant x<0,\vspace{0.25 cm}\\\displaystyle\;\left[1+\frac{1-e^{(x-\mu)}}{x+\mu}\right]^{-1}&\text{if}\ 0%\leqslant x<\mu,\vspace{0.25 cm}\\\;1&\text{if}\ x\geqslant\mu.\end{cases}italic_h ( italic_x ) = { start_ROW start_CELL 0 end_CELL start_CELL if italic_x < - italic_μ , end_CELL end_ROW start_ROW start_CELL [ - 1 + divide start_ARG 1 + ( 2 italic_μ - italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT ) italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG italic_x + italic_μ end_ARG ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_CELL start_CELL if - italic_μ ⩽ italic_x < 0 , end_CELL end_ROW start_ROW start_CELL [ 1 + divide start_ARG 1 - italic_e start_POSTSUPERSCRIPT ( italic_x - italic_μ ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_x + italic_μ end_ARG ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_CELL start_CELL if 0 ⩽ italic_x < italic_μ , end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL if italic_x ⩾ italic_μ . end_CELL end_ROW(15)

One can easily check that h(x)𝑥h(x)italic_h ( italic_x ) is increasing function of x𝑥xitalic_x for μ<0𝜇0\mu<0italic_μ < 0 as well as for μ>0𝜇0\mu>0italic_μ > 0. Hence, SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) is increasing failure rate (IFR) distribution.

5 Mean deviation

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean and median. These are known as the mean deviation about the mean and the mean deviation about the median, respectively. Mean deviation about an arbitrary real number ‘a𝑎aitalic_a’ is defined by ηa=E|Xa|subscript𝜂𝑎𝐸𝑋𝑎\eta_{a}=E\lvert X-a\rvertitalic_η start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = italic_E | italic_X - italic_a |.

It leads to expression as

ηa={(1+2μ)eμ+(2μa)ifa<μ,(aμ)eμ+(aμ2μ+1)ea+(2μa)ifμa<0,(aμ)eμ+(aμ+2μ+1)ea+(a2μ)if 0a<μ,(1+2μ)eμ+2ea+(a2μ)ifaμ.subscript𝜂𝑎cases12𝜇superscript𝑒𝜇2𝜇𝑎if𝑎𝜇𝑎𝜇superscript𝑒𝜇𝑎𝜇2𝜇1superscript𝑒𝑎2𝜇𝑎if𝜇𝑎0𝑎𝜇superscript𝑒𝜇𝑎𝜇2𝜇1superscript𝑒𝑎𝑎2𝜇if 0𝑎𝜇12𝜇superscript𝑒𝜇2superscript𝑒𝑎𝑎2𝜇if𝑎𝜇\eta_{a}=\begin{cases}\displaystyle\;-\left(1+\frac{2}{\mu}\right)e^{-\mu}+%\left(\frac{2}{\mu}-a\right)&\text{if}\ a<-\mu,\vspace{0.35cm}\\\displaystyle\;\left(\frac{a}{\mu}\right)e^{-\mu}+\left(\frac{a}{\mu}-\frac{2}%{\mu}+1\right)e^{a}+\left(\frac{2}{\mu}-a\right)&\text{if}\ -\mu\leqslant a<0,%\vspace{0.35 cm}\\\displaystyle\;\left(\frac{a}{\mu}\right)e^{-\mu}+\left(\frac{a}{\mu}+\frac{2}%{\mu}+1\right)e^{-a}+\left(a-\frac{2}{\mu}\right)&\text{if}\ 0\leqslant a<\mu,%\vspace{0.35cm}\\\displaystyle\;\left(1+\frac{2}{\mu}\right)e^{-\mu}+2e^{-a}+\left(a-\frac{2}{%\mu}\right)&\text{if}\ a\geqslant\mu.\end{cases}italic_η start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = { start_ROW start_CELL - ( 1 + divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT + ( divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG - italic_a ) end_CELL start_CELL if italic_a < - italic_μ , end_CELL end_ROW start_ROW start_CELL ( divide start_ARG italic_a end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT + ( divide start_ARG italic_a end_ARG start_ARG italic_μ end_ARG - divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG + 1 ) italic_e start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT + ( divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG - italic_a ) end_CELL start_CELL if - italic_μ ⩽ italic_a < 0 , end_CELL end_ROW start_ROW start_CELL ( divide start_ARG italic_a end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT + ( divide start_ARG italic_a end_ARG start_ARG italic_μ end_ARG + divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG + 1 ) italic_e start_POSTSUPERSCRIPT - italic_a end_POSTSUPERSCRIPT + ( italic_a - divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) end_CELL start_CELL if 0 ⩽ italic_a < italic_μ , end_CELL end_ROW start_ROW start_CELL ( 1 + divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT + 2 italic_e start_POSTSUPERSCRIPT - italic_a end_POSTSUPERSCRIPT + ( italic_a - divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) end_CELL start_CELL if italic_a ⩾ italic_μ . end_CELL end_ROW(16)

To obtain mean deviation about mean and mean deviation about median, ‘a𝑎aitalic_a’ in the above expression can be replaced by mean and median, respectively.

6 Entropy

The entropy of a random variable X𝑋Xitalic_X measures the variation of uncertainty. The Rènyi entropy of order α𝛼\alphaitalic_α is

Hα=11αlog2{gα(x)𝑑x},α>0,α1,formulae-sequencesubscript𝐻𝛼11𝛼subscript2superscript𝑔𝛼𝑥differential-d𝑥formulae-sequence𝛼0𝛼1H_{\alpha}=\frac{1}{1-\alpha}\,\log_{2}\left\{\int g^{\alpha}(x)dx\right\},\ %\ \alpha>0\ ,\ \alpha\neq 1,italic_H start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 1 - italic_α end_ARG roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { ∫ italic_g start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ( italic_x ) italic_d italic_x } , italic_α > 0 , italic_α ≠ 1 ,(17)

where g(x)𝑔𝑥g(x)italic_g ( italic_x ) is pdf of random variable X𝑋Xitalic_X. By using (6), one can write

gα(x)𝑑x=I1+I2+eαxα,superscript𝑔𝛼𝑥differential-d𝑥subscript𝐼1subscript𝐼2superscript𝑒𝛼𝑥𝛼\int g^{\alpha}(x)dx=I_{1}+I_{2}+\frac{e^{-\alpha x}}{\alpha},∫ italic_g start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ( italic_x ) italic_d italic_x = italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_α italic_x end_POSTSUPERSCRIPT end_ARG start_ARG italic_α end_ARG ,

where I1=μ0eαx(x2μ+12)α𝑑x=(1α)(12)α[j=0α(1μα)jα!(αj)!(1μα)αeμα]subscript𝐼1superscriptsubscript𝜇0superscript𝑒𝛼𝑥superscript𝑥2𝜇12𝛼differential-d𝑥1𝛼superscript12𝛼delimited-[]superscriptsubscript𝑗0𝛼superscript1𝜇𝛼𝑗𝛼𝛼𝑗superscript1𝜇𝛼𝛼superscript𝑒𝜇𝛼I_{1}=\int\displaylimits_{-\mu}^{0}e^{\alpha x}\left(\frac{x}{2\mu}+\frac{1}{2%}\right)^{\alpha}dx=\left(\frac{1}{\alpha}\right)\left(\frac{1}{2}\right)^{%\alpha}\left[\sum_{j=0}^{\alpha}\left(\frac{-1}{\mu\alpha}\right)^{j}\frac{%\alpha!}{(\alpha-j)!}-\left(\frac{-1}{\mu\alpha}\right)^{\alpha}e^{-\mu\alpha}\right]italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT - italic_μ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_α italic_x end_POSTSUPERSCRIPT ( divide start_ARG italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_d italic_x = ( divide start_ARG 1 end_ARG start_ARG italic_α end_ARG ) ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT [ ∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ( divide start_ARG - 1 end_ARG start_ARG italic_μ italic_α end_ARG ) start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT divide start_ARG italic_α ! end_ARG start_ARG ( italic_α - italic_j ) ! end_ARG - ( divide start_ARG - 1 end_ARG start_ARG italic_μ italic_α end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_μ italic_α end_POSTSUPERSCRIPT ]and I2=0μeαx(x2μ+12)α𝑑x=j=0αα!(αj)!(2μα)j[2(αj)eμαα].subscript𝐼2superscriptsubscript0𝜇superscript𝑒𝛼𝑥superscript𝑥2𝜇12𝛼differential-d𝑥superscriptsubscript𝑗0𝛼𝛼𝛼𝑗superscript2𝜇𝛼𝑗delimited-[]superscript2𝛼𝑗superscript𝑒𝜇𝛼𝛼I_{2}=\int\displaylimits_{0}^{\mu}e^{-\alpha x}\left(\frac{x}{2\mu}+\frac{1}{2%}\right)^{\alpha}dx=\sum_{j=0}^{\alpha}\frac{\alpha!}{(\alpha-j)!(2\mu\alpha)^%{j}}\left[\frac{2^{-(\alpha-j)}-e^{-\mu\alpha}}{\alpha}\right].italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_α italic_x end_POSTSUPERSCRIPT ( divide start_ARG italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_d italic_x = ∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT divide start_ARG italic_α ! end_ARG start_ARG ( italic_α - italic_j ) ! ( 2 italic_μ italic_α ) start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_ARG [ divide start_ARG 2 start_POSTSUPERSCRIPT - ( italic_α - italic_j ) end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_μ italic_α end_POSTSUPERSCRIPT end_ARG start_ARG italic_α end_ARG ] .

Therefore,

gα(x)𝑑x=1αj=0αα!(αj)![2(αj)(1+(1)j)eμα(2μα)j]+eμαα[1(12μα)α].superscript𝑔𝛼𝑥differential-d𝑥1𝛼superscriptsubscript𝑗0𝛼𝛼𝛼𝑗delimited-[]superscript2𝛼𝑗1superscript1𝑗superscript𝑒𝜇𝛼superscript2𝜇𝛼𝑗superscript𝑒𝜇𝛼𝛼delimited-[]1superscript12𝜇𝛼𝛼\begin{split}\int g^{\alpha}(x)dx=&\frac{1}{\alpha}\sum_{j=0}^{\alpha}\frac{%\alpha!}{(\alpha-j)!}\left[\frac{2^{-(\alpha-j)}(1+(-1)^{j})-e^{-\mu\alpha}}{(%2\mu\alpha)^{j}}\right]\\&+\frac{e^{-\mu\alpha}}{\alpha}\left[1-\left(\frac{-1}{2\mu\alpha}\right)^{%\alpha}\right].\end{split}start_ROW start_CELL ∫ italic_g start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ( italic_x ) italic_d italic_x = end_CELL start_CELL divide start_ARG 1 end_ARG start_ARG italic_α end_ARG ∑ start_POSTSUBSCRIPT italic_j = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT divide start_ARG italic_α ! end_ARG start_ARG ( italic_α - italic_j ) ! end_ARG [ divide start_ARG 2 start_POSTSUPERSCRIPT - ( italic_α - italic_j ) end_POSTSUPERSCRIPT ( 1 + ( - 1 ) start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ) - italic_e start_POSTSUPERSCRIPT - italic_μ italic_α end_POSTSUPERSCRIPT end_ARG start_ARG ( 2 italic_μ italic_α ) start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_ARG ] end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_μ italic_α end_POSTSUPERSCRIPT end_ARG start_ARG italic_α end_ARG [ 1 - ( divide start_ARG - 1 end_ARG start_ARG 2 italic_μ italic_α end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ] . end_CELL end_ROW(18)

One can obtain the Rènyi entropy of order α𝛼\alphaitalic_α by substituting (18) in (17).

The Shannon entropy function is the particular case of (17) for α1𝛼1\alpha\uparrow 1italic_α ↑ 1, and it is H=E[log2g(X)]𝐻𝐸delimited-[]subscript2𝑔𝑋H=E[-\log_{2}g(X)]italic_H = italic_E [ - roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_g ( italic_X ) ], where g(x)𝑔𝑥g(x)italic_g ( italic_x ) is pdf of random variable X𝑋Xitalic_X. Using this definition, after some simplification we get,

H=1ln20μxex2μlog2[(x2μ+12)(x2μ+12)]𝑑x0μex2log2[(x2μ+12)(x2μ+12)]𝑑x.𝐻12superscriptsubscript0𝜇𝑥superscript𝑒𝑥2𝜇subscript2𝑥2𝜇12𝑥2𝜇12differential-d𝑥superscriptsubscript0𝜇superscript𝑒𝑥2subscript2𝑥2𝜇12𝑥2𝜇12differential-d𝑥\begin{split}H=&\frac{1}{\ln 2}-\int\displaylimits_{0}^{\mu}\frac{xe^{-x}}{2%\mu}\ \log_{2}\left[\frac{\left(\displaystyle\frac{x}{2\mu}+\frac{1}{2}\right)%}{\left(\displaystyle\frac{-x}{2\mu}+\frac{1}{2}\right)}\right]dx\\&-\int\displaylimits_{0}^{\mu}\frac{e^{-x}}{2}\ \log_{2}\left[\left(\frac{-x}{%2\mu}+\frac{1}{2}\right)\left(\frac{x}{2\mu}+\frac{1}{2}\right)\right]dx.\end{split}start_ROW start_CELL italic_H = end_CELL start_CELL divide start_ARG 1 end_ARG start_ARG roman_ln 2 end_ARG - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT divide start_ARG italic_x italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_μ end_ARG roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ divide start_ARG ( divide start_ARG italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) end_ARG start_ARG ( divide start_ARG - italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) end_ARG ] italic_d italic_x end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG roman_log start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ ( divide start_ARG - italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) ( divide start_ARG italic_x end_ARG start_ARG 2 italic_μ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) ] italic_d italic_x . end_CELL end_ROW(19)

Since the above integration is cumbersome, we numerically evaluate H𝐻Hitalic_H for different values of μ𝜇\muitalic_μ using R-software. Figure 3 represents a graph of μ𝜇\muitalic_μ (μ>0)𝜇0(\mu>0)( italic_μ > 0 ) versus H𝐻Hitalic_H.

The skew-symmetric-Laplace-uniform distribution (5)

7 Estimation

Here, we first consider simulating values of a random variable X𝑋Xitalic_X with the pdf (6) using the inverse transformation technique. Let r𝑟ritalic_r be a random number between zero and one.The generator to generate a random sample is

X={Solution of the equation,if 0r<G(0),ex(x1+μ)+eμ2rμ=0Solution of the equation,ifG(0)r<G(μ),ex(x1μ)+eμ+2(1r)μ=0ln(1r)ifG(μ)r1.𝑋casesSolution of the equation,if 0𝑟𝐺0superscript𝑒𝑥𝑥1𝜇superscript𝑒𝜇2𝑟𝜇0otherwiseSolution of the equation,if𝐺0𝑟𝐺𝜇superscript𝑒𝑥𝑥1𝜇superscript𝑒𝜇21𝑟𝜇0otherwise1𝑟if𝐺𝜇𝑟1X=\begin{cases}\;\text{Solution of the equation,}&\text{if}\ 0\leqslant r<G(0)%,\\\;e^{x}(x-1+\mu)+e^{-\mu}-2r\mu=0\vspace{0.35 cm}\\\;\text{Solution of the equation,}&\text{if}\ G(0)\leqslant r<G(\mu),\\\;e^{-x}(-x-1-\mu)+e^{-\mu}+2(1-r)\mu=0\vspace{0.35 cm}\\\;-\ln(1-r)&\text{if}\ G(\mu)\leqslant r\leqslant 1.\par\end{cases}italic_X = { start_ROW start_CELL Solution of the equation, end_CELL start_CELL if 0 ⩽ italic_r < italic_G ( 0 ) , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT ( italic_x - 1 + italic_μ ) + italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT - 2 italic_r italic_μ = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Solution of the equation, end_CELL start_CELL if italic_G ( 0 ) ⩽ italic_r < italic_G ( italic_μ ) , end_CELL end_ROW start_ROW start_CELL italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT ( - italic_x - 1 - italic_μ ) + italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT + 2 ( 1 - italic_r ) italic_μ = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL - roman_ln ( 1 - italic_r ) end_CELL start_CELL if italic_G ( italic_μ ) ⩽ italic_r ⩽ 1 . end_CELL end_ROW(20)

One can use the Newton-Raphson method to solve the equation in (20) and generate a random sample from SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) given in (6).

Now, we consider the estimation of μ𝜇\muitalic_μ by the method of moments and the method of maximum likelihood. To estimate unknown parameter μ𝜇\muitalic_μ, we have to consider both the cases μ<0𝜇0\mu<0italic_μ < 0 and μ>0𝜇0\mu>0italic_μ > 0 together. Suppose x1,,xnsubscript𝑥1subscript𝑥𝑛x_{1},...,x_{n}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is an observed random sample of size ‘n𝑛nitalic_n’ from (6). For the method of moments estimation, after equating sample mean x¯¯𝑥\overline{x}over¯ start_ARG italic_x end_ARG to the first population raw moment of (6), one obtains the equation

x¯={2μ+(12μ)eμifμ<0,2μ(1+2μ)eμifμ>0.¯𝑥cases2𝜇12𝜇superscript𝑒𝜇if𝜇02𝜇12𝜇superscript𝑒𝜇if𝜇0\overline{x}=\begin{cases}\displaystyle\;\frac{2}{\mu}+\left(1-\frac{2}{\mu}%\right)e^{\mu}&\quad\text{if}\ \mu<0,\\\displaystyle\;\frac{2}{\mu}-\left(1+\frac{2}{\mu}\right)e^{-\mu}&\quad\text{%if}\ \mu>0.\end{cases}over¯ start_ARG italic_x end_ARG = { start_ROW start_CELL divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG + ( 1 - divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT end_CELL start_CELL if italic_μ < 0 , end_CELL end_ROW start_ROW start_CELL divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG - ( 1 + divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT end_CELL start_CELL if italic_μ > 0 . end_CELL end_ROW(21)

From Figure 2, we see that μ1superscriptsubscript𝜇1\mu_{1}^{{}^{\prime}}italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT decreases from 0 to -1 when <μ<0𝜇0-\infty<\mu<0- ∞ < italic_μ < 0 and it decreases from 1 to 0 when 0<μ<0𝜇0<\mu<\infty0 < italic_μ < ∞, i.e., always 1<μ1<11superscriptsubscript𝜇11-1<\mu_{1}^{{}^{\prime}}<1- 1 < italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT < 1. Therefore, if x¯<1¯𝑥1\overline{x}<-1over¯ start_ARG italic_x end_ARG < - 1 or x¯>1¯𝑥1\overline{x}>1over¯ start_ARG italic_x end_ARG > 1 for a particular sample, then (21) will not have an exact solution. As per Figure 2, μ𝜇\muitalic_μ corresponds to the closest value of μ1superscriptsubscript𝜇1\mu_{1}^{{}^{\prime}}italic_μ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT to x¯¯𝑥\overline{x}over¯ start_ARG italic_x end_ARG if x¯<1¯𝑥1\overline{x}<-1over¯ start_ARG italic_x end_ARG < - 1 or x¯>1¯𝑥1\overline{x}>1over¯ start_ARG italic_x end_ARG > 1 is a value close to zero. But as per parameter space, μ𝜇\muitalic_μ can not take the value zero. Hence, we define the moment estimator μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG of μ𝜇\muitalic_μ as 105superscript105-10^{-5}- 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT if x¯<1¯𝑥1\overline{x}<-1over¯ start_ARG italic_x end_ARG < - 1 and 105superscript10510^{-5}10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT if x¯>1¯𝑥1\overline{x}>1over¯ start_ARG italic_x end_ARG > 1. Thus, the moment estimator μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG of μ𝜇\muitalic_μ is obtained as follows.

μ~={105ifx¯1,Solution of the equation,if1<x¯<0,2μ+(12μ)eμx¯=0Solution of the equation,if 0x¯<1,2μ(1+2μ)eμx¯=0 105ifx¯1.~𝜇casessuperscript105if¯𝑥1Solution of the equation,if1¯𝑥02𝜇12𝜇superscript𝑒𝜇¯𝑥0otherwiseSolution of the equation,if 0¯𝑥12𝜇12𝜇superscript𝑒𝜇¯𝑥0otherwisesuperscript105if¯𝑥1\tilde{\mu}=\begin{cases}\;-10^{-5}&\quad\text{if}\ \ \overline{x}\leqslant-1,%\vspace{0.35 cm}\\\;\text{Solution of the equation,}&\quad\text{if}\ \ -1<\overline{x}<0,\\\;\displaystyle\frac{2}{\mu}+\left(1-\frac{2}{\mu}\right)e^{\mu}-\overline{x}=%0\vspace{0.35 cm}\\\;\text{Solution of the equation,}&\quad\text{if}\ \ 0\leqslant\overline{x}<1,%\\\;\displaystyle\frac{2}{\mu}-\left(1+\frac{2}{\mu}\right)e^{-\mu}-\overline{x}%=0\vspace{0.35 cm}\\\;10^{-5}&\quad\text{if}\ \ \overline{x}\geqslant 1.\end{cases}over~ start_ARG italic_μ end_ARG = { start_ROW start_CELL - 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT end_CELL start_CELL if over¯ start_ARG italic_x end_ARG ⩽ - 1 , end_CELL end_ROW start_ROW start_CELL Solution of the equation, end_CELL start_CELL if - 1 < over¯ start_ARG italic_x end_ARG < 0 , end_CELL end_ROW start_ROW start_CELL divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG + ( 1 - divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT - over¯ start_ARG italic_x end_ARG = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL Solution of the equation, end_CELL start_CELL if 0 ⩽ over¯ start_ARG italic_x end_ARG < 1 , end_CELL end_ROW start_ROW start_CELL divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG - ( 1 + divide start_ARG 2 end_ARG start_ARG italic_μ end_ARG ) italic_e start_POSTSUPERSCRIPT - italic_μ end_POSTSUPERSCRIPT - over¯ start_ARG italic_x end_ARG = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT end_CELL start_CELL if over¯ start_ARG italic_x end_ARG ⩾ 1 . end_CELL end_ROW(22)

We consider the estimation of μ𝜇\muitalic_μ by the method of maximum likelihood in the following. Let x(1),x(2),,x(n)subscript𝑥1subscript𝑥2subscript𝑥𝑛x_{(1)},x_{(2)},\ldots,x_{(n)}italic_x start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT be the order statistics of given sample. Suppose μ<0𝜇0\mu<0italic_μ < 0 and ‘r1subscript𝑟1r_{1}italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT’ denotes the number of observations less than μ𝜇\muitalic_μ such that <x(1)<x(2)<<x(r1)μx(r1+1)<<x(n)<μ<subscript𝑥1subscript𝑥2subscript𝑥subscript𝑟1𝜇subscript𝑥subscript𝑟11subscript𝑥𝑛𝜇-\infty<x_{(1)}<x_{(2)}<\ldots<x_{(r_{1})}\leqslant\mu\leqslant x_{(r_{1}+1)}<%\ldots<x_{(n)}<-\mu<\infty- ∞ < italic_x start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT < … < italic_x start_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ⩽ italic_μ ⩽ italic_x start_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 1 ) end_POSTSUBSCRIPT < … < italic_x start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT < - italic_μ < ∞, i.e. <μ<min(0,x(n))𝜇0subscript𝑥𝑛-\infty<\mu<\min(0,\,-x_{(n)})- ∞ < italic_μ < roman_min ( 0 , - italic_x start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT ) where r1=0,1,2,,nsubscript𝑟1012𝑛r_{1}=0,1,2,\ldots,nitalic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , 1 , 2 , … , italic_n. Similarly, suppose μ>0𝜇0\mu>0italic_μ > 0 and ‘r2subscript𝑟2r_{2}italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT’ denotes the number of observations lying in the interval [μ,μ]𝜇𝜇[-\mu,\mu][ - italic_μ , italic_μ ] such that <μ<x(1)<x(2)<<x(r2)μx(r2+1)<<x(n)<𝜇subscript𝑥1subscript𝑥2subscript𝑥subscript𝑟2𝜇subscript𝑥subscript𝑟21subscript𝑥𝑛-\infty<-\mu<x_{(1)}<x_{(2)}<\ldots<x_{(r_{2})}\leqslant\mu\leqslant x_{(r_{2}%+1)}<\ldots<x_{(n)}<\infty- ∞ < - italic_μ < italic_x start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT < … < italic_x start_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT ⩽ italic_μ ⩽ italic_x start_POSTSUBSCRIPT ( italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ) end_POSTSUBSCRIPT < … < italic_x start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT < ∞, i.e. max(0,x(1))<μ<0subscript𝑥1𝜇\max(0,\,-x_{(1)})<\mu<\inftyroman_max ( 0 , - italic_x start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT ) < italic_μ < ∞ where r2=0,1,2,,nsubscript𝑟2012𝑛r_{2}=0,1,2,\ldots,nitalic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 , 1 , 2 , … , italic_n. Hence, the log-likelihood function of μ𝜇\muitalic_μ is written as

l={l1=i=1n|x(i)|+i=r1+1nln(x(i)+μ2μ)if<μ<min{0,x(n)},l2=i=1n|x(i)|+i=1r2ln(x(i)+μ2μ)ifmax{x(1), 0}<μ<.𝑙casessubscript𝑙1superscriptsubscript𝑖1𝑛subscript𝑥𝑖superscriptsubscript𝑖subscript𝑟11𝑛𝑙𝑛subscript𝑥𝑖𝜇2𝜇if𝜇0subscript𝑥𝑛subscript𝑙2superscriptsubscript𝑖1𝑛subscript𝑥𝑖superscriptsubscript𝑖1subscript𝑟2𝑙𝑛subscript𝑥𝑖𝜇2𝜇ifsubscript𝑥1 0𝜇l=\begin{cases}\;l_{1}=\displaystyle-\sum\limits_{i=1}^{n}\lvert x_{(i)}\rvert%+\sum\limits_{i=r_{1}+1}^{n}ln\left(\frac{x_{(i)}+\mu}{2\mu}\right)&\text{if}%\ -\infty<\mu<\min\{0,\,-x_{(n)}\},\\\;l_{2}=\displaystyle-\sum\limits_{i=1}^{n}\lvert x_{(i)}\rvert+\sum\limits_{i%=1}^{r_{2}}ln\left(\frac{x_{(i)}+\mu}{2\mu}\right)&\text{if}\ \max\{-x_{(1)},%\,0\}<\mu<\infty.\end{cases}italic_l = { start_ROW start_CELL italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT | italic_x start_POSTSUBSCRIPT ( italic_i ) end_POSTSUBSCRIPT | + ∑ start_POSTSUBSCRIPT italic_i = italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_l italic_n ( divide start_ARG italic_x start_POSTSUBSCRIPT ( italic_i ) end_POSTSUBSCRIPT + italic_μ end_ARG start_ARG 2 italic_μ end_ARG ) end_CELL start_CELL if - ∞ < italic_μ < roman_min { 0 , - italic_x start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT } , end_CELL end_ROW start_ROW start_CELL italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = - ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT | italic_x start_POSTSUBSCRIPT ( italic_i ) end_POSTSUBSCRIPT | + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_l italic_n ( divide start_ARG italic_x start_POSTSUBSCRIPT ( italic_i ) end_POSTSUBSCRIPT + italic_μ end_ARG start_ARG 2 italic_μ end_ARG ) end_CELL start_CELL if roman_max { - italic_x start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT , 0 } < italic_μ < ∞ . end_CELL end_ROW(23)

In the following, we give a step-wise procedure for computation of the MLE μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG of μ𝜇\muitalic_μ.

  1. Step 1:

    Numerically maximize l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT over the range (a,min{0,x(n)})𝑎0subscript𝑥𝑛(-a,\min\{0,-x_{(n)}\})( - italic_a , roman_min { 0 , - italic_x start_POSTSUBSCRIPT ( italic_n ) end_POSTSUBSCRIPT } ). Suppose the maximum value of l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is l^1subscript^𝑙1\hat{l}_{1}over^ start_ARG italic_l end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT which is attained at μ^1subscript^𝜇1\hat{\mu}_{1}over^ start_ARG italic_μ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, say, where ‘a𝑎aitalic_a’ is a sufficiently large positive number chosen for computation purposes.

  2. Step 2:

    Numerically maximize l2subscript𝑙2l_{2}italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT over the range (max{x(1),0},a)subscript𝑥10𝑎(\max\{-x_{(1)},0\},a)( roman_max { - italic_x start_POSTSUBSCRIPT ( 1 ) end_POSTSUBSCRIPT , 0 } , italic_a ). Suppose the maximum value of l2subscript𝑙2l_{2}italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is l^2subscript^𝑙2\hat{l}_{2}over^ start_ARG italic_l end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT which is attained at μ^2subscript^𝜇2\hat{\mu}_{2}over^ start_ARG italic_μ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, say.

  3. Step 3:

    MLE μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG of μ𝜇\muitalic_μ is

    μ^=^𝜇absent\displaystyle\hat{\mu}=over^ start_ARG italic_μ end_ARG ={μ^1ifl^1>l^2,μ^2otherwise.casessubscript^𝜇1ifsubscript^𝑙1subscript^𝑙2otherwisesubscript^𝜇2otherwiseotherwise\displaystyle\begin{cases}\;\hat{\mu}_{1}\quad\text{if}\ \hat{l}_{1}>\hat{l}_{%2},\\\;\hat{\mu}_{2}\quad\text{otherwise}.\end{cases}{ start_ROW start_CELL over^ start_ARG italic_μ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT if over^ start_ARG italic_l end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > over^ start_ARG italic_l end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL over^ start_ARG italic_μ end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT otherwise . end_CELL start_CELL end_CELL end_ROW(24)

Finite sample properties of μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG and μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG are studied using simulation, and computations are done using R- software. Table 2 and Table 3 presents bias and MSE of μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG and μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG for n=100(100)1000𝑛1001001000n=100(100)1000italic_n = 100 ( 100 ) 1000 and for μ=1.5,0.75,0.25,0.25,0.75,1.5𝜇1.50.750.250.250.751.5\mu=-1.5,-0.75,-0.25,0.25,0.75,1.5italic_μ = - 1.5 , - 0.75 , - 0.25 , 0.25 , 0.75 , 1.5. We see that bias and MSE decrease as sample size n𝑛nitalic_n increases for both MLE μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG and moment estimator μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG, with few exceptions only for bias. Further, the MSE of μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG is always less than the corresponding MSE of μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG. Also, one can observe that sign of bias of MLE μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG is opposite to the sign of parameter μ𝜇\muitalic_μ. As parameter μ𝜇\muitalic_μ approaches zero from any side, MSE and magnitude of bias of μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG decrease. But, no such observation in the case of the moment estimator μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG. To check the asymptotic nature of the distribution of μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG and μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG using simulation, we plotted observed densities for various values of the sample size n𝑛nitalic_n. We observe that as n𝑛nitalic_n increases, the distribution of both μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG and μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG converges to the normal distribution, but the rate of convergence to normal distribution seems to be much higher for μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG than μ~~𝜇\tilde{\mu}over~ start_ARG italic_μ end_ARG. Thus, based on all the above results, we conclude that MLE is better than the moment estimator of μ𝜇\muitalic_μ for SSLUD(μ𝜇\muitalic_μ).

μ𝜇\muitalic_μn𝑛nitalic_nMLEMoment estimator
BiasMSEBiasMSE
-1.51000.060243810.0451766540.00037972040.50541564
2000.039065220.0213578560.01570557470.26786436
3000.029339630.012989993-0.00086441770.16465504
4000.023759480.009209691-0.00859261000.12896987
5000.017661140.007451091-0.00658997720.10033671
6000.018089050.0063704780.00755809980.08311324
7000.014566890.005214147-0.00036763650.06853064
8000.014925060.004456640-0.01643465840.05661172
9000.013815750.003861085-0.00795397530.05188121
10000.013780360.0032940510.00528173710.04687188
-0.751000.0325119010.0134889603-0.024880110.37927153
2000.0233750170.00623419730.026785630.24807994
3000.0226142340.00407534830.054426080.18159122
4000.0137824280.00264817750.024071040.14540491
5000.0141885780.00199422880.040114150.12661616
6000.0105311130.00165800240.027412340.10965835
7000.0095678910.00141427290.022474480.09215384
8000.0089698220.00121070340.032995460.08416938
9000.0088339280.00102589050.026045490.07738691
10000.0073070650.00094731390.015974010.06532169
-0.251000.0269106850.0043941552-0.201482950.28701317
2000.0146335910.0016442189-0.125612770.18340413
3000.0112984820.0010134272-0.110087630.14648063
4000.0084037150.0007178242-0.071154050.11693260
5000.0068662620.0005193217-0.054756210.10104767
6000.0065779650.0004359336-0.041018100.09227325
7000.0055749530.0003294627-0.039317420.08363312
8000.0051969380.0002914057-0.022455610.07867760
9000.0046819500.0002552058-0.033056080.07551096
10000.0037976660.0002160883-0.013930330.06746986
μ𝜇\muitalic_μn𝑛nitalic_nMLEMoment estimator
BiasMSEBiasMSE
0.25100-0.0261416010.00409261270.199081730.30299408
200-0.0157069930.00173780350.119791480.18277572
300-0.0105376950.00096297240.102812780.15122684
400-0.0093881540.00068236470.071385950.11273918
500-0.0076544030.00052417050.066700070.10613451
600-0.0065419760.00042732220.047102480.09317236
700-0.0057750660.00034989240.036819520.08264223
800-0.0054248330.00030760710.026133400.07893736
900-0.0046870410.00026413790.023088140.07288723
1000-0.0045879650.00021889290.021683870.07098162
0.75100-0.0394036410.01411631540.023811510.36120747
200-0.0232156670.0057148979-0.019031350.24011612
300-0.0180102060.0037173032-0.049105070.18917471
400-0.0130042980.0026953723-0.024355560.13988301
500-0.0119374220.0020292707-0.048492630.13064004
600-0.0104237560.0016294899-0.022779270.10673985
700-0.0092296750.0013339162-0.032019230.09343322
800-0.0092869690.0011661790-0.023812940.08053673
900-0.0088506380.0010360152-0.023661720.07657251
1000-0.0089578690.0009469547-0.015626010.06498910
1.5100-0.058845540.047383765-0.0131277450.54926083
200-0.030009570.020339855-0.0060909580.25400260
300-0.031863030.013144354-0.0101533440.16976755
400-0.022844580.009625618-0.0024825060.13057787
500-0.022939750.007759937-0.0084217230.09775602
600-0.018415740.005969112-0.0093215180.08234397
700-0.017247140.005152509-0.0040563750.06780765
800-0.011971580.004282729-0.0084112360.06338525
900-0.014849890.004060138-0.0097737870.05273530
1000-0.012285600.0034085020.0033899470.04925195

8 Application

In this section, we present the application of skew-symmetric-Laplace-uniform distribution for modeling daily percentage change in the price of NIFTY 50, an Indian stock market index. Further, we have fitted and compared the proposed distribution SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) with normal distribution N(θ,σ2)𝑁𝜃superscript𝜎2N(\theta,\sigma^{2})italic_N ( italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), Laplace distribution L(θ,β)𝐿𝜃𝛽L(\theta,\beta)italic_L ( italic_θ , italic_β ), and skew-Laplace distribution SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ) for percentage change data. Here, SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ) refers to a special case of skew-Laplace distribution using f𝑓fitalic_f and K𝐾Kitalic_K as pdf and cdf of standard Laplace distribution in (1). The NIFTY 50 is a benchmark Indian stock market index representing the weighted average of 50 of the largest Indian companies listed on the National Stock Exchange (NSE). It is one of the two leading stock indices used in India. The daily price of NIFTY 50 quoted in the National Stock Exchange of India Ltd. is available at https://in.investing.com/indices/s-p-cnx-nifty-historical-data and is selected for the current study. We consider the daily percentage change Ytsubscript𝑌𝑡Y_{t}italic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT on day t given by Yt=XtXt1Xt1×100subscript𝑌𝑡subscript𝑋𝑡subscript𝑋𝑡1subscript𝑋𝑡1100\displaystyle Y_{t}=\frac{X_{t}\,-\,X_{t-1}}{X_{t-1}}\times 100italic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = divide start_ARG italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - italic_X start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_X start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT end_ARG × 100, where Xtsubscript𝑋𝑡X_{t}italic_X start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT denotes the price of NIFTY 50 on day t. This transformed data covering the period 16thsuperscript16𝑡16^{th}16 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT December 2021 to 13thsuperscript13𝑡13^{th}13 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT April 2022 (82 working days) is as follows :
0.16, - 1.53, - 2.18, 0.94, 1.10, 0.69, - 0.40, 0.49, 0.86, - 0.11, - 0.06, 0.87, 1.57, 1.02, 0.67, - 1.00, 0.38, 1.07, 0.29, 0.87, 0.25, - 0.01, 0.29, - 1.07, - 0.96, - 1.01, - 0.79, - 2.66, 0.75, - 0.97, - 0.05, 1.39, 1.37, 1.16, - 1.24, - 0.25, - 1.73, 0.31, 1.14, 0.81, - 1.31, - 3.06, 3.03, - 0.17, - 0.10, - 0.16, - 0.40, - 0.67, - 0.17, - 4.78, 2.53, 0.81, - 1.12, - 0.65, - 1.53, - 2.35, 0.95, 2.07, 1.53, 0.21, 1.45, - 1.23, 1.87, 1.84, - 0.98, 1.16, - 0.40, - 0.13, - 0.40, 0.40, 0.60, 1.00, - 0.19, 1.18, 2.17, - 0.53, - 0.83, - 0.94, 0.82, - 0.62, - 0.82, - 0.31.

Mean, variance, and skewness for the above data is 0.027, 1.671, and - 0.639 respectively.The Wald-Wolfowitz runs test for randomness of Ytsubscript𝑌𝑡Y_{t}italic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT yields a p-value of 0.076, justifying the assumption of independence of the Ytsubscript𝑌𝑡Y_{t}italic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT values. We consider fitting the proposed skew-symmetric-Laplace-uniform distribution SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) along with normal distribution N(θ,σ2)𝑁𝜃superscript𝜎2N(\theta,\sigma^{2})italic_N ( italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), Laplace distribution L(θ,β)𝐿𝜃𝛽L(\theta,\beta)italic_L ( italic_θ , italic_β ), and skew-Laplace distribution SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ) to the data on percentage change. Using R-software, the MLE of the parameters and hence, the estimated value of log-likelihood are obtained. Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC) are used for model comparison. Table 4 shows that the proposed SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) provides the best fit for the data set which is very close to SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ) in terms of BIC. But in terms of AIC, N(θ,σ2𝜃superscript𝜎2\theta,\sigma^{2}italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) seems to be better than SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) and the best among the four distributions.

DistributionMLEslnL𝐿Litalic_LAICBIC
SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ )μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG= 62.38674- 138.7604279.5207281.9274
SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ )λ^^𝜆\hat{\lambda}over^ start_ARG italic_λ end_ARG= -6.247468e-05- 138.7782279.5564281.9631
L(θ,β)𝐿𝜃𝛽L(\theta,\beta)italic_L ( italic_θ , italic_β )θ^^𝜃\hat{\theta}over^ start_ARG italic_θ end_ARG= - 0.03, β^^𝛽\hat{\beta}over^ start_ARG italic_β end_ARG= 0.9990244- 138.7580281.5161286.3295
N(θ,σ2)𝑁𝜃superscript𝜎2N(\theta,\sigma^{2})italic_N ( italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )θ^^𝜃\hat{\theta}over^ start_ARG italic_θ end_ARG= 0.02682927, σ^2superscript^𝜎2\hat{\sigma}^{2}over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT= 1.650275- 136.9081277.8162282.6296
The skew-symmetric-Laplace-uniform distribution (6)

For SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ), MLE of μ𝜇\muitalic_μ is μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG=62.38674 which is relatively high, and by definition of g(x)𝑔𝑥g(x)italic_g ( italic_x ) in (6) for a large value of μ𝜇\muitalic_μ, SSLUD approaches to Laplace distribution. But, from the histogram in Figure 4 and the value of skewness for Ytsubscript𝑌𝑡Y_{t}italic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT, one can observe that data is negatively skewed. It might be due to a single parameter in the proposed distribution unable to give the best fit to the data. By changing the data location, significant change observed in SSLUD’s curve in terms of location, scale, and shape. So, by observation, one can choose an appropriate change in location such that the value of μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG is significantly small for possible better fitting of data using the proposed distribution. Through the trial and error method, here we consider a change as - 0.8 and define transformed daily percentage change in Nifty 50 index price, Zt=Yt0.8subscript𝑍𝑡subscript𝑌𝑡0.8Z_{t}=Y_{t}-0.8italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_Y start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - 0.8 which gives μ^=2.589259^𝜇2.589259\hat{\mu}=-2.589259over^ start_ARG italic_μ end_ARG = - 2.589259, a significantly small value. A possible generalization of proposed distribution with additional location parameter to avoid hindrance to employ it is under consideration, in order to make it more flexible and apt to catch the features present in real data.

Table 5 shows the MLEs, estimated log-likelihood, AIC, and BIC by fitting the distributions mentioned above to Ztsubscript𝑍𝑡Z_{t}italic_Z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT. The graphical representation of the results is given in Figure 5. It is clear from Table 5 that the proposed SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) provides the best fit for the data set in terms of both AIC and BIC, but close to SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ). The plot of observed and expected densities presented in Figure 5 also confirms our findings. Thus, SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ ) is better for modeling daily percentage change in the price of NIFTY 50 in comparison to normal distribution N(θ,σ2)𝑁𝜃superscript𝜎2N(\theta,\sigma^{2})italic_N ( italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) and Laplace distribution L(θ,β)𝐿𝜃𝛽L(\theta,\beta)italic_L ( italic_θ , italic_β ), and one good alternative to skew-Laplace distribution SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ ).

DistributionMLEslnL𝐿Litalic_LAICBIC
SSLUD(μ)𝑆𝑆𝐿𝑈𝐷𝜇SSLUD(\mu)italic_S italic_S italic_L italic_U italic_D ( italic_μ )μ^^𝜇\hat{\mu}over^ start_ARG italic_μ end_ARG= - 2.589259- 136.8343275.6685278.0752
SL(λ)𝑆𝐿𝜆SL(\lambda)italic_S italic_L ( italic_λ )λ^^𝜆\hat{\lambda}over^ start_ARG italic_λ end_ARG= - 0.6988722- 137.0020276.0040278.4107
L(θ,β)𝐿𝜃𝛽L(\theta,\beta)italic_L ( italic_θ , italic_β )θ^^𝜃\hat{\theta}over^ start_ARG italic_θ end_ARG= - 0.83, β^^𝛽\hat{\beta}over^ start_ARG italic_β end_ARG= 0.9990244- 138.7580281.5161286.3295
N(θ,σ2)𝑁𝜃superscript𝜎2N(\theta,\sigma^{2})italic_N ( italic_θ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )θ^^𝜃\hat{\theta}over^ start_ARG italic_θ end_ARG= - 0.7731707, σ^2superscript^𝜎2\hat{\sigma}^{2}over^ start_ARG italic_σ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT= 1.650275- 136.9081277.8162282.6296
The skew-symmetric-Laplace-uniform distribution (7)

Declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Both authors have agreed to submit and publish this paper.

References

  • Arnold and Lin, (2004)Arnold, B.C. and Lin, G.D. (2004).Characterizations of the skew-normal and generalized chi distributions.Sankhyā: The Indian Journal of Statistics, 66(4):1–14.
  • Aryal and Rao, (2005)Aryal, G. and Rao, A. (2005).Reliability model using truncated skew-laplace distribution.Nonlinear Analysis, 63:e639–e646.
  • Azzalini, (1985)Azzalini, A. (1985).A class of distributions which includes the normal ones.Scandinavian journal of statistics, 12(2):171–178.
  • Kotz etal., (2001)Kotz, S., Kozubowski, T., and Podgórski, K. (2001).The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance.Springer Science & Business Media.
  • Kozubowski and Nolan, (2008)Kozubowski, T.J. and Nolan, J.P. (2008).Infinite divisibility of skew gaussian and laplace laws.Statistics & probability letters, 78(6):654–660.
  • Kozubowski and Podgórski, (2001)Kozubowski, T.J. and Podgórski, K. (2001).Asymmetric laplace laws and modeling financial data.Mathematical and Computer Modelling, 34:1003–1021.
  • Nadarajah, (2009)Nadarajah, S. (2009).The skew logistic distribution.Advances in Statistical Analysis, 93:187–203.
  • Nadarajah and Kotz, (2003)Nadarajah, S. and Kotz, S. (2003).Skewed distributions generated by the normal kernel.Statistics & probability letters, 65(3):269–277.
  • Nekoukhou and Alamatsaz, (2012)Nekoukhou, V. and Alamatsaz, M. (2012).A family of skew-symmetric-laplace distributions.Statistical papers, 53:685–696.
  • Rachev and SenGupta, (1993)Rachev, S. and SenGupta, A. (1993).Laplace-weibull mixtures for modeling price changes.Management Science, 39(8):1029–1038.
  • Rydén etal., (1998)Rydén, T., Teräsvirta, T., and Åsbrink, S. (1998).Stylized facts of daily return series and the hidden markov model.Journal of applied econometrics, 13(3):217–244.
  • Theodossiou, (1998)Theodossiou, P. (1998).Financial data and the skewed generalized t distribution.Management Science, 44(Part 1 of 2):1650–1661.
  • Zeckhauser and Thompson, (1970)Zeckhauser, R. and Thompson, M. (1970).Linear regression with non-normal error terms.The Review of Economics and Statistics, 52:280–286.
The skew-symmetric-Laplace-uniform distribution (2024)
Top Articles
Latest Posts
Article information

Author: Sen. Emmett Berge

Last Updated:

Views: 6279

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.